Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0298646, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427634

RESUMEN

Foot pronation is a prevalent condition known to contribute to a range of lower extremity injuries. Numerous interventions have been employed to address this issue, many of which are expensive and necessitate specific facilities. Gait retraining has been suggested as a promising intervention for modifying foot pronation, offering the advantage of being accessible and independent of additional materials or specific time. We aimed to systematically review the literature on the effect of gait retraining on foot pronation. We searched four databases including PubMed, Web of Science, Scopus and Embase from their inception through 20 June 2023. The Downs and Black appraisal scale was applied to assess quality of included studies. Two reviewers screened studies to identify studies reporting the effect of different methods of gait-retraining on foot pronation. Outcomes of interest were rearfoot eversion, foot pronation, and foot arch. Two authors separately extracted data from included studies. Data of interest were study design, intervention, variable, sample size and sex, tools, age, height, weight, body mass index, running experience, and weekly distance of running. Mean differences and 95% confidence intervals (CI) were calculated with random effects model in RevMan version 5.4. Fifteen studies with a total of 295 participants were included. The results of the meta-analysis showed that changing step width does not have a significant effect on peak rearfoot eversion. The results of the meta-analysis showed that changing step width does not have a significant effect on peak rearfoot eversion. Results of single studies indicated that reducing foot progression angle (MD 2.1, 95% CI 0.62, 3.58), lateralizing COP (MD -3.3, 95% CI -4.88, -1.72) can effectively reduce foot pronation. Overall, this study suggests that gait retraining may be a promising intervention for reducing foot pronation; Most of the included studies demonstrated significant improvements in foot pronation following gait retraining. Changing center of pressure, foot progression angle and forefoot strike training appeared to yield more favorable outcomes. However, further research is needed to fully understand its effectiveness and long-term benefits.


Asunto(s)
Pie , Marcha , Humanos , Pronación , Fenómenos Biomecánicos , Extremidad Inferior
2.
BMC Sports Sci Med Rehabil ; 15(1): 168, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093253

RESUMEN

BACKGROUND: Biofeedback may alter the biomechanics of lower extremities in patients with chronic ankle instability (CAI). We aimed to systematically review the literature on the effect of gait-training and biofeedback on biomechanical parameters in individuals with CAI and conduct a meta-analysis. METHODS: We searched four databases including PubMed, Web of Science, Scopus and Embase from their inception through 30th June 2022. The Downs and Black appraisal scale was applied to assess quality of included studies. Two reviewers screened studies to identify those reporting the effect of biofeedback on biomechanical factors associated with CAI. Outcomes of interest were kinetics and kinematics. Two authors separately extracted data from included studies. Data of interest were study design, number of sessions, intervention, tools, outcomes, number, sex, age, height, and body mass of participants. RESULTS: Thirteen studies with a total of 226 participants were included. Biofeedback was capable of shifting center of pressure (COP) and lateral plantar pressure medially and reducing foot inversion, adduction, propulsive vertical ground reaction force (vGRF), ankle joint contact force, peak pressure and pressure time integral in the lateral mid-foot and forefoot. Auditory biofeedback had agreater impact on modifying plantar pressure in individuals with CAI. The meta-analyses revealed that visual biofeedback reduces peak pressure in lateral mid-foot and pressure time integral at lateral and medial heel and pressure increases under the hallux. CONCLUSION: Biofeedback can alter pressure, vGRF, and foot inversion associated with CAI. Auditory biofeedback had greater impact on modifying plantar pressure in individuals with CAI. Further studies are required to assess the prolonged effect and clinical consequences of biofeedback or a combination of feedback on CAI in different age groups. Moreover, developing a low-cost and user-friendly device that can be evaluated in high quality RCTs is important prior to implementing the intervention in the clinical setting to reduce symptoms of CAI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...